
Basic Principles --1 
 

 

 

 

Running Head: Principles of QEEG 

 

Basic Principles of Quantitative EEG 

 
David A. Kaiser, Ph.D. 

 
 

Rochester Institute of Technology 
 

 

 

 

Send correspondence to: 

David A. Kaiser, Ph.D. 

Rochester Institute of Technology 

18 Lomb Memorial Drive, 6-A116 

Rochester, NY 14623 

(585) 475-6773 

dakaiser@mail.rit.edu



Basic Principles --2 
 

Abstract 

Principles of quantitative electroencephalography (EEG) relevant to neurotherapy are 

reviewed. A brief history of EEG, the general properties of human EEG, and the issues 

and obstacles associated with quantitative methods are discussed. Fourier analysis is also 

described. 
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Basic Principles of Quantitative EEG 

 
 The human electroencephalogram (EEG) may be the most complex set of signals 

in nature and is certainly the most complicated phenomenon routinely subjected to 

scientific experimentation. That electrical potentials are detectable at the scalp at all is 

the result of some fortuitous neural architecture. Human neocortex consists of tightly 

packed arrays of columns, six neurons deep, aligned perpendicular to the pia matter 

directly below the skull (Mountcastle, 1978). Any other orientation and the 

neuroelectrical activity would cancel each other out entirely, but because of this 

organization electrical potentials propagate to the scalp where their differences can be 

measured. Scalp potentials are exceedingly faint, mere millionths of a volt, a thousand 

times weaker than the heart’s electrical rhythms, and even the blink of an eye can swamp 

the signal temporarily. 

 Each scalp electrode detects the electrocellular activity of about 10 billion cortical 

neurons. This information is smeared and distorted by the insulating layers between 

cortex and sensor (skin, skull, dura, blood, spinal fluid, pia) and if this was not enough of 

an obstacle to interpretation, negative and positive potentials cancel each other out so 

that we detect only the difference in valence, what’s left over after cancellation, which 

accounts for only a fraction of the electrocellular activity beneath the sensor. And it is the 

difference in electrical potential between two sensors which registers. Finally, scalp 

recordings produce two-dimensional representations of brain activity (topography), but 

the brain is a volume and an irregular one at that (Meijs et al, 1987). Mathematical 

techniques can generate three-dimensional pictures of internal structures (tomography) 

by identifying likely sources of surface potentials, but it’s difficult and dubious to 
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estimate volume dynamics from surface activity (Pascual-Marqui et al, 1994). And 

because only columnar structures contribute to surface recordings most subcortical 

structures appear silent. Altogether, it makes interpreting EEG data a bit like trying to 

discern the comings and goings of marine life from the eddies and swells on the surface 

of a lake. But it’s not impossible. In fact EEG has been reliably interpreted for many 

conditions and contexts including epilepsy, sleep, and psychological research for 70 

years (e.g., Gibbs et al., 1937; Loomis et al., 1935). In its favor is its remarkably high 

temporal resolution (millisecond range), comparable to cortical and thalamic cell firing 

rates (Steriade et al, 1978). Whereas other functional neuroimaging techniques such as 

positron emission tomography and functional magnetic resonance imaging are based on 

metabolic transactions (e.g., blood flow, oxygenation), EEG and MEG 

(magnetoencephalography) allow us to eavesdrop on neural communication directly.  

The field of human electroencephalography, a basic tool of clinical neurology for 

much of the last century, originated in the efforts of Hans Berger, a German psychiatrist 

working alone. Between 1929 and 1938 Berger published 14 reports on human EEG and 

its relation to cognition and neurological disturbances (Millett, 2001). Much of what we 

know about human EEG was first documented by him, especially in the middle 

frequencies. For instance, Berger described the phenomenon of alpha blocking, an abrupt 

suspension of alpha waveforms in ongoing EEG when an individual opens her eyes 

(Berger, 1929). Quantitative EEG begins and ends with alpha blocking, at least 

metaphorically. If we cannot explain this very reliable and unmistakeable aspect of 

human EEG and use it to calibrate cognition and attentional states, we cannot do much 

more with the other less predictable features of this phenomenon. Alpha blocking is 
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independent of respiratory, vascular, or motoric responses and occurs when individuals 

pay attention to objects in the environment, even when the eyes are closed (Etevenon, 

1986; Adrian & Matthews, 1934). Opening one’s eyes in a darkened room will not affect 

alpha activity (Bohdanecky et al., 1984) whereas stimulus intensity, complexity, 

familiarity, and meaningfulness will, presumably due to changes in attention (Gale & 

Edwards, 1983; Baker & Franken, 1967; Boiten et al., 1992). When alpha blocking was 

subjected to quantitative methods, it showed itself to be one of degree, not all-or-nothing. 

The term “alpha blocking” was replaced by “desynchronization” to better reflect this 

gradation. Alpha rhythms may become partially desynchronized (instead of wholly 

desynchronized or blocked) when sensory information is anticipated, attended to, or 

otherwise processed (Pfurtscheller, 1986). Alpha desynchronization need not involve the 

entire cortex all at once; uncommitted cortical areas can remain in an "idling" 

synchronized state while other areas are desynchronized (Pfurtscheller, 1992). Regional 

patterns of simultaneous desynchronization and synchronization reflect different 

cognitive and behavioral states such as sensorimotor performance (Sterman et al., 1996). 

 EEG may be analyzed qualitatively, as Berger did, or quantitatively, as those who 

followed. In qualitative analysis, common to neurology and sleep studies, the features of 

an EEG chart are characterized in a general way, in a more categorical fashion. Some 

evidence of abnormality or physiological state exists, or it doesn’t, or is or isn’t likely. In 

quantitative analysis, common to psychological research and neurotherapy, these features 

are subjected to mathematical and statistical analyses and the extent of each feature being 

examined is calculated. Each approach classifies the EEG record in terms of  “frequency  

or period, amplitude, phase relations, morphology (waveform), topology, abundance,  
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reactivity and variability of these parameters… (e.g., continuous, random, paroxysmal, 

etc.) “ (Brazier et al, 1961). Little has changed conceptually in 40 years except our 

experience and the speed and computational power of our tools.  

 Quantitative EEG commenced 70 years ago when Dietsch (1932) applied Fourier 

analysis to seven records of EEG. Fourier analysis remains one of the most popular 

analysis technique in this field, though hardly alone. Given the profound difficulties 

associated with EEG signal acquisition and analysis, EEG researchers have always been 

early adopters of technology (Berger, 1929; Brazier et al., 1961), but it was the advent of 

powerful personal computers and the invention of the fast fourier transform (Cooley & 

Tukey, 1965) which launched this field. Ironically, fast fourier transforms (FFTs) are 

avoided in operant conditioning (neurofeedback) because they require intervals, which 

introduces an unacceptable time lag for training. Real-time or near instantaneous spectral 

techniques such as digital filters are employed instead. Fourier analysis is a very accurate 

spectral analysis technique so it is often used offline, for assessment, when time is not an 

issue. As the discipline matures, quantitative EEG will likely emerge as a mainstay of 

neurology, sleep medicine, as well as psychiatry and psychology, but at this point in time 

it remains controversial to some (Nuwer, 1997; but see Thatcher et al, 1999). Such 

reservation to quantitative methods is rare in science and medicine, and probably reflects 

the complexity of the phenomena under investigation as well as the ambitions of parties 

on both sides of the issue. 

 Quantitative EEG is regarded as noisy, unreliable, and imprecise in the minds of 

many psychologists, neuroscientists, and medical professionals (Nuwer, 1988; Begley, 

1992), but this reputation is undeserved and being shed. It came about partly because 
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complexity fosters freedom, at least until things are better understood. A researcher 

interested in quantitative EEG analysis confronts a gauntlet of largely arbitrary 

methodological choices about reference electrodes, recording electrodes, and artifact 

management techniques, as well as epoch parameters, windowing functions, bandwidths, 

and other spectral parameters when spectral analysis is performed, and every choice has 

been thoroughly criticized in one way or another (see Kaiser, 2001a). Different 

methodologies produce incompatible and conflicting results, which fosters confusion, but 

there is no immediate solution to this problem due to the range of variables addressed 

and our current lack of understanding (Remond & Lairy, 1972). Given the variety of 

methodologies, combined with the computational intricacies of EEG, it’s understandable 

why many psychologists and physicians have ignored the promise and potential of this 

evaluative and diagnostic tool. What is known is that EEG is a chaotic signal consisting 

of non-periodic (spikes, “random noise”), non-sinusoidal and periodic (mu), or sinusoidal 

and periodic (alpha, delta) signals (Nunez, 1981). Neurotherapists tend to focus on 

sinusoidal signals and divide the frequency spectrum into four or five relevant frequency 

bands (e.g., theta at 4-7 or 4-8 Hz, SMR or sensorimotor rhythm at 12-15 Hz) to capture 

these periodic features. As wide frequency bands encompass a variety of physiological 

processes (Lorig & Schwartz, 1989), some clinicians opt for narrower frequency bands 

including single-Hertz bands (Kaiser, 2001b).  

In any investigation we should ask ourselves, what am we trying to do? (Sterman, 

2003). With EEG spectral analysis we convert voltage amplitudes into frequencies. Why? 

Because we believe that mental processes are better reflected in the periodicities we 

identify than the raw values we detect. We should be able to observe these periodicities 
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in the visual record, and note their actions and possible functions, else we may just be 

fooling ourselves.The further removed our analysis takes us from the raw signal, the 

more likely error has crept in. Non-linear and highly derived indexes of EEG activity run 

the risk of being empirically meaningless, uninterpretable, or fraught with unproven or 

untestable assumptions. We already know that on one level neural coding is linearly 

related to perception (e.g., Johnson, Hsiao, & Blake, 1996). Such psychophysical efforts 

are a far cry from a brain activity index of thought processes but it is a starting point and 

we dare not tread too far away from the actual recording, whatever approach we take. 

Let us look at an example of human EEG: 

----------------------------  

INSERT FIGURE 1 here: 

----------------------------  

 Rhythmicities in the signal are generally thought to be caused by neuronal 

synchronization from extensive inhibitory processes within the thalamocortical system 

(Andersen & Andersson, 1968; Steriade et al, 1990), or from negative feedback among 

excitatory and inhibitory neurons (Freeman, 1975), or both, depending upon the 

frequency of interest. By its definition, rhythmic signals are periodic and relatively easy 

to analyze given the regularity of features. However clinicians are often interested in 

tasks that involve challenges, that a client performs poorly on, such as reading, math, or 

visual processing. But as shown in Figure 1, any mental challenge, even opening the 

eyes, elicits faster frequencies and “random” noise. Fortunately even “flat” signals 

contain rhythmic components whose incidence and amplitudes can be quantified. 

Frequency analysis provides a good first pass at the data, reducing a large amount of 



Basic Principles --9 
 

information into a handful of coefficients. While information is necessarily lost during 

such data reduction, what’s lost may not be pertinent to cognition -- an empirical 

question we have yet to answer definitively.  

 Frequency or spectral analysis involves selection of elementary shapes or 

frequencies (waveforms) which are added together like weights on a scale until their total 

matches the pattern under investigated, as shown in Figure 2. The height or intensity of a 

waveform, its amplitude, is computed in microvolts for each frequency. Different 

waveforms are captured by wide or narrow frequency bands or bands tailored to specific 

properties under investigation (e.g., Kaiser, 2001b; see Figure 3). Impurity is dealt with 

by decomposing and analyzing each frequency band separately or by comparing each 

frequency band’s relative contribution to the entire signal. Stability of a signal across 

time (stationarity) is a prerequisite for accurate Fourier analysis, and a signal is often 

segmented into short time intervals of like signals to increase its stability. When two or 

more signals are compared, the stationarity of phase and amplitude difference (coherence 

and comodulation, respectively, Sterman & Kaiser, 2001), as well as spatial topography, 

come into play.  

----------------------------  

INSERT FIGURE 2 about here 

----------------------------  

----------------------------  

INSERT FIGURE 3 about here 

----------------------------  

In QEEG assessment we assume that each behavioral and mental state such as 
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rest, mathematical processing, or face recognition, is reasonably homogeneous in nature, 

that the various perceptual and cognitive operations underlying each state of action or 

mental process occur in like qualities and quantities whenever the state occurs. This 

assumption called the macrostate assumption and it is the basis for cognitive 

neuroscience. In QEEG and other functional neuroimaging techniques we also assume 

that these perceptual and cognitive operations exhibit a distinct and reliable profile of 

brain activity (Gevins, 1984). So far, the assumption has served us adequately. For 

instance, chronic alcoholics typically exhibit less alpha activity than most people. So one 

way to treat this disorder might be to simply increase the amount of this activity, at least 

until it reaches the normal range. The intriguing neurotherapeutic technique known as 

alpha-theta training does just that, and with often unpredictably positive effects (Jones & 

Holmes, 1976). Most if not all psychiatric and neurological disorders exhibit abnormal 

patterns of spectral activity (e.g., Hughes & John, 1999). This is the crux of 

neurotherapy. Using the well known rules of operant conditioning, neurotherapists train 

individuals to suppress abnormal patterns of neuroelectrical communication and to elicit 

more normal ones. In other words, clients learn their way to mental health. Learning is 

what differentiates psychological therapies (present) from medical ones (absent). 

Neurotherapy’s goal is to improve self-regulation of cerebral mechanisms. Bad behaviors 

are eliminated and good behaviors fostered, with the wrinkle being that these behaviors 

are imperceptible to the individual without the tools these therapists possess, as these 

behaviors are happening inside the skull and not outside of it. And quantitative EEG 

assessment identifies just exactly which behaviors these are. 
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Figure Captions 

Figure 1. Six seconds of EEG data recorded at 19 electrode sites from the same child 

recorded minutes apart. One might mistakenly characterize the intial 3-s segment as 

inactive and the latter as alert and active. The fast anterior sinusoidal rhythm in the latter 

segment is a sleep spindle. The child was alert with eyes open during the first part of the 

record but in stage two sleep a few minutes later. 

 

Figure 2. Decomposing two seconds of an impure (multiple frequency) waveform that 

consists of the same three frequencies. The only difference between segments is the 

magnitude of the 2 Hz and 11 Hz contributions. 

 

Figure 3. Illustration of selected spectral parameters described by Brazier et al. (1961). 
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